Petrology and depositional history of a Middle Ordovician carbonate platform: Chickamauga Group, northeastern Tennessee

Author(s):  
STEPHEN C. RUPPEL ◽  
KENNETH R. WALKER
1990 ◽  
Vol 27 (6) ◽  
pp. 731-741 ◽  
Author(s):  
Rudolf Bertrand

Carbonate platform sequences of Anticosti Island and the Mingan Archipelago are Early Ordovician to Early Silurian in age. With the exception of the Macasty Formation, the sequences are impoverished in dispersed organic matter, which is chiefly composed of zooclasts. Zooclast reflectances suggest that the Upper Ordovician and Silurian sequences outcropping on Anticosti Island are entirely in the oil window but that the Lower to Middle Ordovician beds of the Mingan Archipelago and their stratigraphic equivalents in the subsurface of most of Anticosti Island belong to the condensate zone. Only the deeper sequences of the southwestern sector of Anticosti Island are in the diagenetic dry-gas zone. The maximum depth of burial of sequences below now-eroded Silurian to Devonian strata increases from 2.3 km on southwestern Anticosti Island to 4.5 km in the Mingan Archipelago. A late upwarp of the Precambrian basement likely allowed deeper erosion of the Paleozoic strata in the vicinity of the Mingan Archipelago than on Anticosti Island. Differential erosion resulted in a southwestern tilting of equal maturation surfaces. The Macasty Formation, the only source rock of the basin (total organic carbon generally > 3.5%, shows a wide range of thermal maturation levels (potential oil window to diagenetic dry gas). It can be inferred from the burial history of Anticosti Island sequences that oil generation began later but continued for a longer period of geologic time in the northeastern part than in the southeastern part of the island. Oil generation was entirely pre-Acadian in the southern and western parts of Anticosti Island, but pre- and post-Acadian in the northern and eastern parts.


2019 ◽  
Vol 157 (4) ◽  
pp. 539-550
Author(s):  
Gabriela Torre ◽  
Guillermo L. Albanesi

AbstractThe presence of a carbonate platform that interfingers towards the west with slope facies allows for the identification of an ancient lower Palaeozoic continental margin in the Western Precordillera of Argentina. The Los Sombreros Formation is essential for the interpretation of the continental slope of the Precordillera, which accreted to Gondwana as part of the Cuyania Terrane in the early Palaeozoic. The age of these slope deposits is controversial; therefore, a precise biostratigraphic scheme is critical to reveal the evolution of the South American continental margin of Gondwana. The study of lithic deposits of two sections of the Los Sombreros Formation, the El Salto and Los Túneles sections, provides important information for further understanding the depositional history of the slope. At El Salto section, the conodonts recovered from an allochthonous block refer to the Cordylodus proavus Zone (upper Furongian). The conodonts recovered from the matrix of a calclithite bed of the Los Sombreros Formation in the Los Túneles section are assigned to the Lenodus variabilis Zone (early Darriwilian), providing a minimum age for this stratigraphic unit. In addition, clasts from this sample yielded conodonts from the Paltodus deltifer − Macerodus dianae zones (upper Tremadocian). The contrasting conodont colour alterations and preservation states from the elements of two latter records, coming from the same sample, argue the reworked clasts originated in the carbonate platform and later transported to the slope during the accretion process of the Precordilleran Terrane to the South American Gondwanan margin during the Middle–Late Ordovician.


2010 ◽  
Vol 33 (1) ◽  
pp. 19 ◽  
Author(s):  
Fernando J. Gomez ◽  
Ricardo A. Astini

The La Laja Formation is a key unit regarding the hypothesis of the Argentine Precordillera as a Laurentia-derived allochtonous terrane in the south central Andes. Together with the Cerro Totora Formation it comprises the oldest unit exposed at the base of the Lower Paleozoic carbonate platform of the Precordillera. According to previous work these units record the rifting-drifting history of this terrane exotic to Gondwana. The La Laja Formation contrasts with the rest of the overlying units of the Cambro-Ordovician carbonate platform by being partly mixed carbonate-siliciclastic. A detailed facies analysis of the five recognized members in the reference section at Quebrada La Laja (Sierra Chica de Zonda, San Juan Province) allow the recognition of 19 microfacies grouped into four main environmentally significant associations: 1) a storm-influenced, deep subtidal environment with variable influx of fine siliciclastic sediments; 2) shallow subtidal, 3) mixed shallow subtidal and 4) shallow subtidal to intertidal occasionally with well developed high-frequency tidal flat cycles. No deeper basinal or slope facies were found. In contrast, the unit largely records shallow-marine facies with some evidence of subaerial exposure. Medium to coarse, calcareous, feldspar-rich sandstones and sandy limestones characterize the El Estero Member. The base of the Soldano Member shows profuse development of cyclicity with capping oolitic shoals. This member and the upper Juan Pobre Member contain deeper subtidal intervals, below the storm weather wave base, with high percentages of fine terrigenous material represented by shaly marls and nodular limestones. Skeletal-rich and oolite-rich storm beds are recorded within them. Relative shallowing to subaerial environments recorded within the Rivadavia and Las Torres members, with the development of ribbon limestones, intraclastic rudstones, microkarstic surfaces and exposure breccias. Herringbone cross-bedded oolite shoals are common at the top of the uppermost Las Torres Member. The transition into the overlying Zonda Formation is represented by an abrupt rearrangement of the depositional systems and development of meter-scale microbial-rich peritidal cycles. Several orders of superposed cyclicity are recorded within the La Laja Formation. Larger-scale cycles ('Grand Cycles') are inferred from alternating members with important amounts of siliciclastics, whereas meter-scale cycles indicate higher frequency superposed mechanisms. Altogether these show a complex depositional history linking environmental and tectono-eustatic signatures.


2019 ◽  
Vol 46 (2) ◽  
pp. 336
Author(s):  
Susana Heredia ◽  
Ana Mestre ◽  
Cintia Kaufmann ◽  
Tatiana Soria

The stratigraphic record of the Pygodus serra conodont Zone in the Cuyania terrane of western Argentina is discussed in this contribution. Three well-known sections were sampled in Precordillera and the San Rafael Block. The studied successions are composed mainly by clastic rocks with variable amount of carbonate. The lower part of Ponón Trehué Formation of the San Rafael Block and the La Cantera Formation of the Eastern Precordillera are composed of conglomerate and represent the input of coarse clastic deposits to the Cuyania basin. The Los Azules Formation, in Los Amarillitos section of the Central Precordillera, has a massive sandstone bed with carbonate nodules in a section largely of black shale. Key conodonts recovered from these sections indicate a correlation to the E. robustus and E. lindstroemi subzones of the Pygodus serra Zone of the upper Darriwillian Stage (Middle Ordovician Series). The species in the Ponón Trehué Formation are almost all the same as those in the Precordillera sections. Correlation of the clastic sedimentary successions between the three sections indicates that vertical facies changes were not controlled by eustasy. More likely, they were controlled by differential tectonic subsidence.


2010 ◽  
Vol 270 (1-4) ◽  
pp. 148-163 ◽  
Author(s):  
Abigail C. Allwood ◽  
Balz S. Kamber ◽  
Malcolm R. Walter ◽  
Ian W. Burch ◽  
Isik Kanik

1985 ◽  
Vol 22 (4) ◽  
pp. 607-618 ◽  
Author(s):  
R. J. Arnott ◽  
W. S. McKerrow ◽  
L. R. M. Cocks

In the Notre Dame Bay region, ophiolitic rocks underlie a thick sequence of Lower Ordovician volcanic-arc rocks to the north of the Lobster Cove – Chanceport Fault. Neither this fault nor the Lukes Arm – Sops Head Fault shows evidence of very large strike-slip movements, as parts of the same arc, together with much arc-derived detritus, straddle both faults. Towards the east, this arc-derived detritus becomes more distal in aspect and passes laterally into the Dunnage Mélange. During the Middle Ordovician Epoch (late Llandeilo and early Caradoc), most areas show a marked decrease in volcanic activity and in the amount of coarse detritus deposited. Coarse turbidites reappear, at different times in different areas, during the Late Ordovician. These are related to several fault-bounded basins and to movements on the Lukes Arm – Sops Head Fault. Many of these faults, particularly in the east, are marked by olistostromes, several of which can be dated by fossils as Late Ordovician and Early Silurian. The whole region, between the Reach Fault on the east and the Baie Verte – Brompton Line on the west, has a stratigraphic unity. If it has been moved by strike slip relative to the Long Range, then any such fault must lie to the west of the Baie Verte – Brompton Line. The interpretation of an Early Ordovician island arc moving above an easterly directed subduction zone is in accord with both the geochemical and palaeontological evidence. The Notre Dame Bay region may have been converted into a transform-dominated margin in the Late Ordovician and Early Silurian in a manner analogous to the oblique slip tectonic regimes of the Californian and New Zealand margins during the Tertiary, with a precursor of the Reach Fault marking the edge of the continent after the Notre Dame island arc had collided with North America.


Sign in / Sign up

Export Citation Format

Share Document